ELIMINANT - significado y definición. Qué es ELIMINANT
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ELIMINANT - definición

POLYNOMIAL EXPRESSION OF THE COEFFICIENTS OF TWO POLYNOMIALS, WHICH IS EQUAL TO ZERO IF AND ONLY IF THE POLYNOMIALS HAVE A COMMON ROOT
Resultants; Eliminant; Macaulay resultant; Multivariate resultant; Macaulay's resultant; Multipolynomial resultant; Polynomial resultant

Eliminant         
·noun The result of eliminating n variables between n homogeneous equations of any degree;
- called also resultant.
resultant         
Resultant means caused by the event just mentioned. (FORMAL)
At least a quarter of a million people have died in the fighting and the resultant famines.
= consequent, ensuing
ADJ: ADJ n
resultant         
¦ adjective occurring or produced as a result.
¦ noun technical a force or other vector quantity which is equivalent to two or more component vectors acting at the same point.

Wikipedia

Resultant

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant.

The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative. The resultant of two polynomials with rational or polynomial coefficients may be computed efficiently on a computer. It is a basic tool of computer algebra, and is a built-in function of most computer algebra systems. It is used, among others, for cylindrical algebraic decomposition, integration of rational functions and drawing of curves defined by a bivariate polynomial equation.

The resultant of n homogeneous polynomials in n variables (also called multivariate resultant, or Macaulay's resultant for distinguishing it from the usual resultant) is a generalization, introduced by Macaulay, of the usual resultant. It is, with Gröbner bases, one of the main tools of elimination theory.